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Abstract

This technical memorandum presents two improved boundary element methods for pre-
dicting hydrodynamic coefficients of two dimensional sections. The first method is a source
distribution method, while the second is a direct method for determining velocity potential. A
major objective of these improved methods is to eliminate errors due to irregular frequencies,
which currently exist in the close-fit method used by the strip theory program SHIPMO. Both
new methods successfully eliminate problems caused by horizontal and vertical line segments
with the close-fit method. To eliminate irregular frequencies of surface-piercing sections, the
source distribution method employs additional sources on a deck lid at the waterline. The
introduction of a deck lid eliminates some irregular frequencies but introduces new irregular
frequencies. Alternatively, a modified direct method effectively eliminates all irregular frequen-
cies. Future strip theory implementations should incorporate this modified direct method. This
technical memorandum also reviews low and high frequency limits of hydrodynamic coefficients.

Résumé

Cette note technique présente deux méthodes améliorées qui résolvent des problémes aux
frontiéres pour prédire les coefficients hydrodynamiques de sections bidimensionnelles. La pre-
miére méthode utilise une distribution de sources tandis que la seconde est une méthode di-
recte qui détermine le potentiel des vitesses. Un objectif trés important pour améliorer ces
méthodes consiste & éliminer les erreurs dues aux fréquences irréguliéres, qui sont actuellement
présentes dans la méthode d’ajustement que le programme SHIPMO utilise. Les deux nouvelles
méthodes éliminent avec succes les problemes que la méthode d’ajustement rencontre avec les
segments de lignes horizontaux ou verticaux. Pour éliminer les fréquences irrégulieres dues aux
sections qui percent la surface libre la méthode par distribution de sources utilise des sources
supplémentaires disposées sur un pont au niveau de la ligne de flottaison. Cette technique élimine
des fréquences irréguliéres mais en fait apparaitre d’autres. Une autre solution consiste a utiliser
une méthode directe modifiée qui élimine réellement les fréquences irréguliéres. Les prochaines
implémentations de la méthode de décompoition devraient comprendre cette méthode directe
modifiée. Cette note technique montre également les limites basses et hautes fréquences des
coefficients hydrodynamiques.
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DREA TM/96/212

IMPROVED BOUNDARY ELEMENT METHODS FOR PREDICTING
SECTIONAL HYDRODYNAMIC COEFFICIENTS
FOR STRIP THEORY SHIP MOTION PROGRAMS

by

Kevin McTaggart
EXECUTIVE SUMMARY

Introduction

The strip theory code SHIPMO is DND’s primary tool for predicting motions and loads of
ships in waves. The slow development of alternative tools such as time domain codes suggests
that strip theory will continue to be the primary seakeeping tool for the next several years. One of
the greatest problems for strip theory computations is the presence of irregular frequencies, which
can cause very large errors in hydrodynamic coefficients for surface-piercing sections. These
errors adversely affect motion predictions and can severely affect load predictions. This study
examines two improved boundary element methods, the source distribution method and the
direct method, and their abilities for removing irregular frequencies. Prediction of hydrodynamic
coefficients at the extremes of the frequency range is also examined.

Principal Results

The improved source distribution and direct methods eliminate many problems with the
current close-fit method. The source distribution method with a deck lid removes some irregular
frequencies but introduces new irregular frequencies. In contrast, a modified direct method effec-
tively removes all irregular frequencies. At high frequencies, the infinite frequency limit provides
an excellent approximation for velocity potential and added mass. Two dimensional methods
give unrealistically high heave added mass and heave damping values for surface-piercing ship
sections at low frequencies. A suitably chosen cut-off frequency appears to provide an acceptable
approximation of heave added mass at lower frequencies.

Significance of Results

The modified direct method provides more reliable predictions of hydrodynamic coefficients
than the close-fit method currently used in SHIPMO. Its implementation into SHIPMO will give
improved ship motion and load predictions. The infinite frequency limit provides reliable values
at high ship frequencies and can also be applied to impulse phenomena such as ship slamming.
Better estimates of low frequency hydrodynamic coefficients will lead to better estimates of ship
motions and loads at low encounter frequencies.
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Future Plans
The modified direct method will replace the close-fit method in the next version of SHIPMO.

The infinite frequency limit for hydrodynamic coefficients at high encounter frequency and the
improved low frequency predictions will also likely be implemented.
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Notation

matrix relating velocity potential to source strength
sectional breadth at waterline

matrix relating normal velocity to source strength
matrix relating velocity potential to vector {D}
wave velocity

velocity term vector for direct method

Green function matrix for direct method
exponential integral function

exponential integral function

principal value function component of Green function
Green function

frequency independent component of Green function
frequency dependent component of Green function
Green function at zero frequency limit

Green function at infinite frequency limit
gravitational acceleration

coefficient for evaluating heave added mass of ellipsoid
wavenumber or mode

ship (or ellipsoid) length

length of line segment k

source length

normal pointing into body

normal pointing into body at &

y and z components of normal 7

normal component for mode k

radius

maximum distance from roll origin to sectional offset points

radius from field point to image source

body surface

sectional draft

velocity

normal velocity

normal velocity for mode k (time independent)
complex normal velocity for mode & (time independent)
Gaussian weighting factor for point j
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Notation (continued)

z field point or source point

Ty, Zo end points of field line segment
T~ lateral image point of &

T source point

Zs1,Zs2 end points of source line segment

Ts—;j quadrature point 5 on source line segment

Y,Z dimensionless coordinates of field point relative to image source
Y, 2 horizontal and vertical coordinates

Ymaz maximum sectional y value

Zc complex variable —Z + 1Y

2y height of roll axis above waterline

a weight term for modified direct method

oy angle of field point ¢ relative to source point

O angle of source point ¢ relative to field point

A ship (or ellipsoid) displacement

0;5 Kroenecker delta function

¢ water surface elevation

i body displacement

1k body displacement for mode &

0 field line inclination angle

05 source line inclination angle

Aij damping coefficient

7 Green function integration variable

Hij added mass coefficient

E field point or source point

P water density

o source strength

o(¥) source strength for mode &

i) velocity potential

¢ complex velocity potential (time independent)
%) complex velocity potential for mode &

¢ revised velocity potential for low and high frequency limits
w oscillation frequency

wc(,S) low frequency limit for valid heave coefficients

w{(,4) lowest frequency for roll coefficient computations
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1 Introduction

Strip theory ship motion programs such as SHIPMO [1, 2, 3, 4, 5, 6] are the most commonly
used method for predicting ship motions and sea loads in a seaway. A key aspect of a strip theory
program is the prediction of hydrodynamic coefficients of two dimensional sections. SHIPMO
can predict sectional hydrodynamic coefficients using either the conformal mapping method or
the Frank close-fit method [7, 8].

The conformal mapping method has various practical limitations. The geometry of an
input section is customarily described by beam, draft, and area coefficient. Consequently, the
method can only model sections which pierce the free surface and fall within an acceptable range
of these input parameters. The limitation of using only three geometric parameters is that the
conformal mapping method gives a limited approximation to the actual sectional geometry. This
approximation can significantly affect roll added mass and damping predictions, which are very
sensitive to sectional geometry. Another limitation of the conformal mapping method is that it
does not predict sectional velocity potentials; thus, long wave approximations must be used for
predicting sectional excitation forces during strip theory calculations. However, an important
advantage of the conformal mapping method is its robustness.

Geometrical input for the Frank close-fit method is given in the form of sectional offsets,
permitting high accuracy in input geometry. The Frank close-fit method used by SHIPMO
suffers from problems as described in References 6 and 9. Input offsets for a section must have
successively greater values for the vertical coordinate z; thus, the code is not able to handle a
section with a flat bottom. The required spacing between vertical coordinates appears to depend
partly on which computer the code is run, indicating a lack of robustness in the algorithm. A
major problem of the Frank close-fit method is the presence of irregular frequencies at which
results are very erratic. Irregular frequencies are common among source distribution methods
for predicting hydrodynamic coefficients of a surface-piercing body. The irregular frequencies
are caused by numerical solutions which satisfy prescribed boundary conditions but initiate
sloshing within the body. This phenomenon occurs at the upper frequency range of interest for
ship motions.

This technical memorandum examines two improved boundary element methods for pre-
dicting sectional hydrodynamic coefficients. The first method is a modified source distribution
method in which a line source is placed across the waterline of a section to inhibit sloshing. Such
methods have been applied previously by Bedel [10], Ohmatsu [11], and Ando [12]. The second
method is a direct method as described by Sclavounos and Lee [13]. The method of Reference 13
is implemented in the DREA submarine motion code SUBMO (14, 15] without correction for
irregular frequencies; the version described here includes the correction.

2 General Description of Problem

Strip theory requires a solution to the flow in the vicinity of an oscillating two dimensional
section such as that shown in Figure 1. The problem of the flow around a general oscillating
body is described in many references, including Kim [16], Sarpkaya and Isaacson [17], and Mei
[18]. The problem is formulated in terms of an oscillatory velocity potential ®. For the two




dimensional case, motions are limited to sway, heave, and roll. The body motions are taken as
being about the center of gravity, located a distance z, above the waterline.

cG

T @

Figure 1: Two Dimensional Ship Section
The velocity potential ® must satisfy a continuity equation and several boundary equations.
Laplace’s continuity equation is:
Ve = 0 (2.1)

Bernoulli’s equation for conservation of energy must be satisfied in the fluid. Retaining only
linear terms, conservation of energy imposes the following boundary condition on the free surface:

0%
§+g( =0 at z=0 (2.2)

where ( is the elevation of waves radiated from the body. The relationship between wave
elevation and the velocity potential on the surface is:

0% ¢
E = ‘a—i- atz2=10 (23)
From Equations (2.2) and (2.3), the velocity potential on the free surface must satisfy:
9*® 0%
-5t7+95; = 0 at z=10 (2.4)

Imposing Equations (2.2), (2.3), and (2.4) at z = 0, the undisturbed surface, is a consequence of
linearization. The following radiation condition is based on the requirement that waves generated
by the oscillating body must radiate outward from the body:

0® 109

e

where 7 is distance from the body. The vertical water velocity must be zero at the water bottom.
For deep water, this condition is:

0%

0z

=0 at r =00 (2.5)

0 at z = - (2.6)



The final boundary condition is that the flow into the body must be zero:
0%
an

where n is the normal pointing into the body and V,, is the normal velocity of the body.

= V, on S (2.7)

For a body experiencing oscillatory motions at frequency w, solution of the problem is
greatly simplified using a time independent complex velocity potential ¢ which has the following
relationship with the time dependent potential ®:

®(y,z,t) = Real{¢(y,z) expiwt} (2.8)
Thus, the complex velocity potential ¢ is merely a function of space.

In a manner similar to that used for the velocity potential, the normal velocity of the body
can be expressed as a complex quantity which is independent of time:

V(t) = Real{7 expiwt} (2.9)

where V and 7 are the actual and time independent oscillatory velocities. For a given motion
mode k, the relationship between the complex velocity v(*) and the complex displacement n(k)
is:

o#®) = fwp®) (2.10)

To obtain hydrodynamic coefficients for a two dimensional section, the complex velocity
potential ¢ around the body must be solved for sway, heave, and roll (denoted by modes k = 2,
3, and 4 respectively). From Equations (2.7), (2.8), and (2.9), the complex potentials must

satisfy the following body boundary conditions:
(k)
% = o on S, for k=2,3,4 (2.11)

The complex normal velocity component vy(lk) for mode & is related to the body normal component

n(F) by:

v® = iwak (2.12)
For motions about the center of gravity, the normals for each mode are:
n® = n, (2.13)
n® = n, (2.14)
) = yn, + (2-2)n, (2.15)

Once the velocity potentials on the body are known, the added mass and damping are
easily evaluated from:

.- P () )
pij = ‘/Sblmag{qb }nz ds (2.16)

Aij = p/ Real{qb(j)} n; dS (2.17)
Sy

where p;; and \;; are added mass and damping coefficients for mode ¢ due to motion of mode j.




3 Source Distribution Method

Source distribution methods for predicting two dimensional hydrodynamic coefficients are
described by many authors, including Kim [16], Sarpkaya and Isaacson [17], and Mei [18]. The
Frank close-fit method {7, 8] is an example of a source distribution method.

The flow in a fluid domain can be described using a distribution of complex sources. For
flow induced by a two dimensional oscillating body, the following equation can be used:

45 = o /S G(3,3,) o(3,) dS (3.1)

where 7 is location in the fluid domain, & is source location, G(Z, Z;) is the Green function
describing the flow at & caused by a source of urit strength at Z5, and o(Z;) is the strength of
the source at 7.

The frequency domain Green function for a two dimensional source based on Newman [19]
is:

G(£,%s) = In(r) - In(r)

- 2}{ , 1 T exp [-uZ] cos(uY) dp + @27 exp(—Z) cosY (3.2)
o H—

The sign of the imaginary term in the above Green function is opposite to that given by Newman
but is consistent with Kim [16] and Salvesen, Tuck, and Faltinsen [20]. The terms » and
respectively denote the distance from the field point & to the source at &5 and to the image of
the source above the free surface:

Va-u) + (z-2) (3.3)

o= -9 + (24 2)’ (3.4)

The dimensionless coordinates Y and Z are based on wavenumber, are both positive, and are
defined as follows:

\3
I

P = (3.5)
Y o= kly-ul (3.6)
Zz = ——k(z-[—zs) (37)

A key feature of the Green function of Equation (3.2) is that it satisfies the required conditions
of Equations (2.1), (2.4), (2.5), and (2.6). The only remaining condition is the velocity boundary
condition on the body (Equation (2.11)), which can be satisfied using the correct source strengths
o(Z) on the body surface. The equation for determining the source strengths that satisfy the
body velocity boundary condition is:

1 (‘?G(m,-zs) o(&

1. .
- §a(:z:) + o 5, onz £)dS = v,(%) (3.8)




3.1 Discretized Solution of Source Distribution Method

Equation (3.8) is normally solved by discretizing a ship section into several line segments,
as shown in Figure 2. Ten line segments are usually sufficient to describe one half of a typical
ship section. The source strength o is assumed to be constant over each line segment and is
such that the velocity boundary condition of Equation (2.11) is satisfied at the midpoint of each
line segment. The resulting discretized form of Equation (3.8) is:

_ _0_( z) n Z = / aG(xnl's) ( s) dsS = vn(fz) (39)

where 2N is the number of segments into which the ship section has been discretized, S; is the
surface of segment j, and &; is the midpoint of segment i. Note that the number of segments in
Equation (3.9) is denoted 2N rather than N, which will simplify the development for symmetrical
sections presented later. Once the source strengths o(&;) are known, the discretized velocity
potentials can be solved using;:

Mo
> = / G(&;, &) 0(&s) dS (3.10)
7=1 2T SJ

Figure 2: Discretized Ship Section for Source Distribution Method

The matrix forms of the equations relating the velocity potentials and normal velocities to
the source strengths are:

{¢(k)} = [4] {a(k)} (3.11)
{v,(f)} [B] {o(k)} (3.12)

From Equations (3.9) and (3.10), the matrix coefficients are:
A;; = / G(&;, & (3.13)

1 + 1 0G(Z;, &5
“3 T o s, Ong

I

By = —6; ds (3.14)

where 6;; is the Kroenecker delta function.




3.2 Symmetry Relations for Source Distribution Method

When running a linear ship motion program such as SHIPMO, lateral symmetry usually
exists for ship sections, giving the following :

(7)) = - oB(@) for k=2,4 (3.15)
B = oB)(3) for k = 3 (3.16)
dF(F) = — ¢W)(z) for k = 2,4 (3.17)
sF(&) = ¢F)(&) for k=3 (3.18)
oM@ = — o)) for k = 2,4 (3.19)
o) = ¥(&) for k=3 (3.20)
where £* is the lateral image of & defined by:
o= -y (3.21)
¥ = z (3.22)

Using the symmetry relations, the source strengths only need to be solved on one side of the
body. If the source strengths and velocity potentials are solved for y > 0, then the coefficients
for Equation (3.11) and Equation (3.12) are:

Ag.‘) - 1 / G(%;,%,) dS — / G(&;, %) dS for k= 2,4 (3.23)

2r | Js; s
L™ =7 f] i

A® = L / G(#:,3;) dS + / G(#:,72) dS for k = 3 (3.24)
T s, 5; _

0 - gL, L[[ 96GE) _/ 0G(5:,77) | _

B‘ij = 61] 9 + o s, anfi ds S; 671,11‘_ dS- for & 2,4 (3.25)

® _ .1, 1 [[ 086Gz 0GELT) | o 4

B’ = —6; 5 T 5o s, o s + s on, dS| for k=3  (3.26)

where 57 denotes the lateral image of S;.

Once the velocity potentials are known for a given half-section, the added mass and damping
are easily computed using the following discretized forms of Equations (2.16) and (2.17):

N
i = 223 i mag {¢{} n’ (3.27)
k=1
N . .
Ni = 2p Y LReal {8} (3.28)
k=1

where [ is the length of segment k.



3.3 Correction of Irregular Frequencies

A major problem with source distribution methods is the occurrence of irregular frequen-
cies at which Equation (3.1) gives incorrect values for source strengths on an oscillating body.
Irregular frequencies are caused by sloshing modes which can occur inside a surface-piercing
body because the formulation (Equations 2.1 to 2.7) allows for an internal free surface. Frank
[7] gives the following equation for the irregular frequencies of a heaving rectangular body:

w; = \/]gg coth(j = T/ B) for j=1,2,...,00 (3.29)

For sectional computations using SHIPMO, the lowest irregular frequencies (j = 1,2) typically
occur at the upper portion of the frequency range of interest; thus, it is very desirable from a
practical viewpoint to eliminate irregular frequency effects.

A common method for eliminating sloshing and its associated irregular frequencies is to
place a deck lid across the waterline of a surface-piercing body, as described by Bedel [10],
Ohmatsu [11], and Ando [12]. Figure 3 shows a ship section with a deck lid. The deck lid
introduces additional line sources. An arbitrary boundary condition can be imposed on the deck
lid. Generally, this boundary condition must be an odd function of y for sway and roll and
an even function of y for heave. In practice, the boundary condition on the deck lid is usually
specified to be that the normal velocity is zero. A variable number of sources can be used to
model the deck lid. Computations by Bedel [10] and Ando [12] indicate that a small number of
line segments (one or two) on the +y portion of the deck lid gives the best results.

Figure 3: Discretized Ship Section with Deck Lid

4 Direct Method

The direct method is an alternative to the source distribution method, and has been de-
scribed by Sclavounos and Lee [13] and Sarpkaya and Isaacson [17]. Like the source distribution
method, the direct method has problems with irregular frequencies; however, Sclavounos and
Lee indicate that the errors caused by irregular frequencies are less severe.




The direct method permits the direct solution of velocity potentials as follows:

1. 8G(§, § > 1 38(§) .
- B + o / MO = 5 | g G(€7) & (41)

where £ is a point on the body. To permit solution of Equation (4.1), the ship section is divided
into a number of discrete straight line segments, as is done for the source distribution method.

The velocity potential ¢ is assumed to be constant along each segment. Equation (4.1) is satisfied
at the midpoint of each segment, giving the following discretized solution of the above equation:

2N P ey L
- 548+ ) 5 [ 900 e dE = Z - % 5) GEa) d (42)

The matrix form of Equation (4.2) is:

(€] {¢} = {D} (4.3)
The terms of Equation (4.3) are:
1 0G(&,%;
Ci; = - '2-6ij + 271_ (S)i %) 3 (4.4)
2N
D; = zvj E;; (4.5)
J=1
By = o /S R GEAY 3 (4.6)

For symmetrical ship sections, the symmetry conditions of Equations (3.15), (3.16), (3.17),
and (3.18) apply and only the N potentials for y > 0 need to be solved. The revised matrix
coefficients are:

(k) 1.1 0G(E &) » [ OGEE) 1) _
Ci 5 0i; + 5 [ i —8n~ d¢ s 3%- for k=2,4 (4.7)
(k) _ _l . l_ 6G(€7 z) / 8G(£* z) = 4

Cyl = 5 6i; + 5 [ S, an d€ + . Bn fork=3 (4.8)
N

p® = STOMEP  fork=23,4 (4.9)
i=1

B = L / G(E. 7)) df — / G, 5) dé|  fork=2,4 (4.10)
27 | Js; sz

EP = 1 / G(€, ;) d€ + / G(6,7;) de*| fork=3 (4.11)
2 |Js; 53 1

-



4.1 Improved Direct Method

Sclavounos and Lee [13] give an improved direct method which greatly reduces irregular
frequency problems of Equation (4.1). Their method combines Equation (4.1) with the following
alternative direct solution:

_log®) 1 9 3G(£, B e - 1 [ 99 9G(ET)
2 Ongz + or dng ¢(€) 5 d = 27 Js, 3n~ " Ong

€ (4.12)

The above equation usually gives results that are less accurate than Equation (4.1). Like Equa-
tion (4.1), Equation (4.12) has irregular frequencies; however, the two equations have different
irregular frequencies.

The linear combination of Equation (4.1) and i times Equation (4.12) gives the following
solution for the velocity potentials:

! . 8 9N e e
500 + gp [ 6O g (1 + ieg) €D =
o 00(5) | 1 [ 060 AP
=202 %( +ial) GEDE (1Y

where « is a constant of arbitrary value. The solution of the above equation satisfies both Equa-
tion (4.1) and Equation (4.12) if o is non-zero. An irregular frequency solution can satisfy one
of Equation (4.1) or Equation (4.12), but only a real solution can satisfy both equations simulta-
neously; thus, the solution to Equation (4.13) typically will not have irregular frequencies if o is
non-zero. Sclavounos and Lee recommend using a value of 0.2 for a, which keeps Equation (4.1)
dominant but gives sufficient weight to Equation (4.12) to mitigate irregular frequencies.

The discretized form of Equation (4.13) is

N
1 1 . 8 9 NN
- 5 ¢((E1) + j§=1: 2o [Sj ¢(€) 371/&" <1 + Zaanfi) G( ’ z) d§ -

onz 4 Z o / 35,5?( 33&) G(E7)dE  (4.14)

For solution using Equation (4.3), the revised matrix coefficients (neglecting symmetry) are:

o
2

S P .0 aG(¢, z)
Ciy; = - 3 0i; + o (1 + w(‘?ngi) 5, on; (4.15)
(%6 N
D;, = 5 v; + Z’v]’ E;; (4.16)
j=1
Ez] = él—- (1 + ZOZ ) / G(Ez,ﬁ) d€ (417)




For sections with lateral symmetry, solution of velocity potentials for y > 0 can be done using
the following revised matrix coefficients:

(k) 1
1 .0 0G(€, %) .= OG(E, %) =, B
+ 57 (l + zaangi) l;/s ——3n§- d§ - st ——_—3125. d¢*| for k =2,4 (4.18)
® _ _1
Cz] = ‘2‘ 61]
+_}_(1+ia 8) a_GgLiE_Z)dg_l_ le(_é’_xi)_dg* fork=3 (4.19)
27 3723-31. S; Bné» 5; 377,&1.
o N
D;, = 5 v; + Z’Uj E;; fork=2,3,4 (4.20)

i=1

1 .0 [ o A aF A =
E; = 5 (1 + zaanfi) [S} G(%;,€) d¢ — /S* G(Z;,&*) de*| fork =2,4 (4.21)

7

E; = — (1 + iad ) / G(&:, &) df + / G(&:, &) dé*| for k=3 (4.22)
T E)nfi | S; S* J

J

For a ship section with lateral symmetry and N segments on its half-section, the direct
method requires solution of an N x N system of equations regardless of whether Equation (4.1)
or the modified form of Equation (4.13) is used. The main burden of using the more complex
equation is that additional derivatives of the Green function integrals are required. Fortunately,
these additional derivatives introduce relatively little new computational effort, as discussed in
the next section.

5 Evaluation of Green Function and Its Derivatives

The evaluation of the Green function of Equation (3.2) is a critical aspect of both source
distribution and direct methods. Among various references discussing the two dimensional Green
function (e.g. Frank [7], Kim [16], and Sarpkaya and Isaacson [17]), Newman [19] gives the most
useful discussion for efficient implementation into a computer code.

The Green function of Equation (3.2) can be divided into components which are indepen-
dent and dependent of frequency as follows:

G(fa -’s) = E(fafs) + G(f,fs) (51)

G(%,%) = Inr — Inm (5.2)

G(#,&) = - 2}4 P L T eXp [—uZ] cos(uY) du + @27 exp(—2Z) cosY (5.3)
o L—
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where G is the frequency independent component and G is the frequency dependent component.
The following two subsections discuss evaluation of each of the above components.

5.1 Frequency Independent Term of Green Function

The frequency independent component of the Green function is very easy to evaluate;
however, the source distribution and direct methods require integration of the Green function
across a source or field line. Experience has shown that the frequency independent component
must be integrated accurately to obtain accurate flow solutions. Consequently, integration should
be performed analytically rather than using numerical schemes such as Gaussian quadrature.

To simplify the present discussion, only the In7 term of the Green function is considered.
Treatment of the In7; term is essentially the same.

The first integral to be considered is that from a line source with end points Z5; and T
to a field point z, as shown in Figure 4. The inclination of the source is:

§; = arctan (M) (5.4)
Ys2 — Ys1

The angles of the source end points relative to the field point are:

asp = arctan (-Z—ﬁ) (5.5)
Y—Ua
as; = arctan (z — zSZ) (5.6)
Y—Ys2
lasg — ag| < 7 (5.7)

According to Comeau and Ando [21], the integral across the line source of the In 7 term is:

/xsz Inrdi, = cos 0, {(ysl - ys2) - %(y - ys2)ln [(y - ysZ)z + (Z - 252)2]
+ %(y — go1)1n [(y = 91)” + (2 = 2a1)?] }
+ siné; {(zsl - 232) - %(z - 232)111 [(y - ys2)2 + (Z - 352)2]
+ %(Z - zsl)ln [(y - y.sl)2 + (z - Zsl)z] }

+ (052 — a51) [(z— 2s2) cosbs — (y — ys2) sinbs] (5.8)
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The derivatives of Equation (5.8) with respect to the field point coordinates are:

2 dlnr

e 0y dé, =
1 (y — ys2)*
03 __l — Ys 2 — L5 7] -
cos { 2 o [(y=g2)’ + (2 - 22)’] (¥ — ¥s2)? + (2 — 252)?
1 (y—ysl)2 }
—1 - UYs 2 T <s 2
+2n[(y Ya) + (2 zl)]+(y“ysl)2+(2—zsl)2

sin --(Z - 252)(y - ?}52) (z - Zsl)(y - ysl)
* % {(y“ys2)2+(2—252)2 (y=ya)*+ (2 - 251)2}

aasZ 36251
¥ ( dy 9y

> [(z = zs2) cosOs — (y— ys2)sinbs] — (s — 51 sin b (5.9)

2 9lnr
/gE 5, s =

cos —(y = ys2)(# = 252) (y = ys1)(z — 2s1)
95{(y—ys2)2+(z—zs2)2 (y~y31)2+(z_zsl)2}
- (z - 232)2
(y - y32)2 + (Z - 252)2
(Z - 231)2) }

(y - ysl)2 + (Z — 25 )2

) 1
+ sinds {—‘2'111 [(y ~ ys2)® + (2 — 252)?]

i)+ (-] +

(agf - ng) [(z = zs2) cos8; — (y — ys2)sinbs] + (as2 — @) cosb (5.10)
The derivatives of angles as; and a4 are:
3351 T - ys—l(; T Zli 251 )2 (5.11)
8"?:1 T - y513;2_+y(sl — Za)? (5.12)
W e gy
ng T G- ysz§2_+yé Z Za)? (5.14)

The integral from a point source &5 to a field line with end points &, &2 shown in Figure 5
is also required. The field line has parameters similar to the line source as follows:

6 = arctan (22 - zl) (5.15)
Y2—%
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Field point
LI

Llnes} xsz
- 0,
Tga=<———=—~=-

Figure 4: Line Source and Field Point

a; = arctan <zs — Zl) (5.16)
Ys— W
a9 = arctan (zs — Z2> (5.17)
Ys — Y2
oz — | < 7 (5.18)

The integral across the field line of Inr is essentially the same as Equation (5.8). The integral
of the normal derivative of Inr along the field line is required for the direct method. When
considering the orientation of the normal vector on the field line, it is assumed that field line
points are numbered consecutively outward from the centerline y = 0 and that the normal vector
to the field line points into the ship. From Comeau and Ando [21], the integral of the normal
derivative on the field line is simply:

T2
/ 381;17' dZ = a1 — oy fory; >0and y2 >0 (5.19)
£ £
.’ir‘g 1
(93117‘ di = —(a1 — o) for y; <0and y2 <0 (5.20)
# Ong

The derivative of Equation (5.19) with respect to the normal vector at the source point Z; is:

6 o 61117‘ - aal aOtQ 8a1 8&2
8n5s 2, anf dT = Ny~ (ays 8:95) + N,z (azs aZs> (5.21)

The derivative of Equation (5.20) can be similarly derived.

Special attention must be given to evaluation of the In 7 integrals when the point & under
consideration is the midpoint of the line segment, leading to singularities. In this situation, the
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Y
Point source
[ ] (L‘s
Field line 5

Figure 5: Field Line and Point Source

following solutions exist:

Ts2
/ Inrd?, = I [ln <l§s> - l] (5.22)
Zs1

2 Alor
/ S AR (5.23)
0 T2 Plnr 4
—di, = - )
Ong ,/;51 Ong, e I (5.24)

where [, is source length. No such singularities exist with the term In r;, except at the waterline
z = 0 where Inr and Inr; cancel each other.

5.2 Frequency Dependent Term of Green Function

The frequency dependent term of the Green function is more complicated than the fre-
quency independent term. Fortunately, its integration over a line source or field line can be
accurately approximated using Gaussian quadrature with a small number of points on the line
(typically less than eight).

Following Newman [19], the frequency dependent term of the Green function is evaluated
as:

G(%,%,) = —2Real {Fpy(Y,2)} + 21 exp(—Z) cos(Y) (5.25)

where Fpy (Y, Z) is a function representing the principal value integral of Equation (5.3). New-
man introduces the following complex variable z.:

2 =—Z+iY (5.26)
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The function Fpy (Y, Z) can be re-written as:
Fpy(Y,Z) = expz E1(z:) + 7i exp z (5.27)
where E;(z.) is the exponential integral defined by:
Ei(z) = / ” %‘f—) dt, |arg(z)| < T (5.28)
Newman gives three efficient methods for evaluating Equation (5.27) based on the ranges of Y’

and Z shown in Figure 6. When |z;| is small (Y < 4 and Z < 8), the following ascending series
gives rapid convergence:

Fpy(Y,Z) = expz !—’y - Inz - Z (;z’;? + mi (5.29)
n=1

The above series requires approximately thirty terms to obtain convergence to six decimal places.

For large values of Y or || (Y > 4 or 3Y > 32 — 2Z), the exp z. Eq(z.) term of Equa-
tion (5.27) is evaluated using a continued fraction expansion:

1
expz. E1(z.) = T (5.30)

Zc + 1
1+ + 5
Ze 5
1+ 3
Zet —g—
1+
A I
A disadvantage of the continued fraction expansion is that it is not possible to specify a tolerance
and then to compute successive terms until that tolerance is obtained. Instead, the number of

terms in the continued fraction must be decided upon before computing terms. Fortunately,
excellent convergence is obtained using 40 terms for the range of Y and Z given in Figure 6.

A double series expansion is used for small values of Y and intermediate values of Z (Y < 4
and 3Y <32-2Z and Z > 8):

va(Y,Z) - Z lY)n

n=0

Z(m" D' _ exp(=2) Ei(2) (5.31)

where Ei(Z) is a second exponential integral from Abramowitz and Stegun [22]:
' z
Ei(Z) = / ept 4y (Z>0) (5.32)
-0

The exponential integral Fi(Z) is easily evaluated using the following series representation from
Reference 22:

Ei(Z) = v+ InZ + Z 7 (Z > 0) (5.33)
7=0
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Figure 6: Ranges for Evaluation of Principal Value Integral of Green Function
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Evaluation of Fpy (Y, Z) using Equation (5.31) normally converges to 6 decimal accuracy within
n = 20 terms.

The restriction of Equation (5.28) that jarg(z.)] < 7 suggests that ¥ cannot be zero
(i.e. the source and field points cannot have the same horizontal coordinates). In practice, the
ascending series (Equation (5.29)) and double series (Equation (5.31)) allow Fpy (Y, Z) to be
evaluated for Y = 0. The only restriction on Fpy (Y, Z) is that either Y or Z must be non-zero.
Noting that Z is zero only when both the source and field point are on the waterline z = 0,
the problematic situation of both Y and Z being zero only occurs when the source point is
located on the waterline and is the same as the field point. This can occur when using a deck
lid to remove irregular frequencies in the source distribution method. During computations the
problem can be avoided by using Gaussian quadrature when evaluating the influence of a line
source at the waterline on the flow at the line midpoint.

The derivatives of the frequency dependent part of the Green function are easily evaluated
once Fpy(Y,Z) is known. Correcting a sign error in [19], the derivatives of Fpy (Y, Z) are:

ag’% = tfpv + 2—_2? (5.34)
8;’?/ = ~Frv - 7% (5.35)
Additional derivatives of Fpy (Y, Z) are:
625?/ = ~fv- g - v (2 = ) (5.36)
a;FZZV = vty - v Tz - 8L (5.37)
%T‘Z/—: "iFPV_Z—iz'Y“(Z —iiY)2 (5.38)

Using the above derivatives, the derivatives of the frequency dependent part of the Green func-
tion are:

0G(gy LON —2 k Sign (y — ys)
X [Real {inv(Y, Z)+ Z —ZZY} + 17 exp(—Z) sin Y] (5.39)

0G(3,%5) _ 1 . _

P = 2k [Real{—FpV(Y, Z) - 7 iY} + im exp(—2) cosY] (5.40)
6‘2G(:c Ts)

s 2
ayays 2
1 1

X [Real{—FPv(Y, zZ)- } + i7 exp(—2Z) cos Y] (5.41)

Z—-iY (Z-iY)?
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2/ = =
PEEZ) — 2k Sien(y-w)

0y0z;
X [Real{—-inV(Y, Z) - = j ¥z _.ziy)Z} — 7 exp(—2) sinY] (5.42)
32G(x ) 82G( Zs)
o0y, - T ooz (5-43)
0%G(z,%3,) _ 9°G(E,%,)
020z, - 0ydz, (5.44)

Unlike the frequency independent part of the Green function, the frequency dependent part
and its derivatives can be integrated to sufficient accuracy using Gaussian quadrature. Cook
[23] gives a good summary of quadrature techniques. As an example, the integral of G from a
line source can be approximated by:

/ G(,%.)dE, = 1, Y W; G(F,5ey) (5.45)
S

where Ng is the number of quadrature points on the line segment, W; is the weighting factor of
point j, and &s—; is the location of quadrature point j on the line source. Figure 7 shows a line
source with four quadrature points. The sum of the weights W; is equal to one. For solution of
hydrodynamic coefficients using the source distribution and direct methods, between one and
four quadrature points per line segment typically will give sufficient accuracy. Using an even
number of quadrature points (Ng = 2 or 4) eliminates the problem of both Y and Z being zero
when evaluating the flow induced by a deck lid source on its own midpoint.

Y
Field point
LI
= fs—4
- Ts-3
= Ts—2
s—1
Line source

Figure 7: Gaussian Quadrature Schematic for Integration of Green Function
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6 Added Mass and Velocity Potentials at Low and High
Frequency Limits

The solutions for velocity potentials and hydrodynamic coefficients presented thus far do
not permit solution at the low frequency limit w — 0 or at the high frequency limit w — co0. A
solution for w = 0 can provide a useful approximation for low frequency oscillations. A corre-
sponding solution w = oo can be useful for approximating high frequency oscillations for which
numerical problems can occur with the frequency dependent solutions presented previously.

To solve for added mass and velocity potential at the low and high frequency limits, the
time-independent velocity potential of Equation (2.8) is replaced by:

1)

! e —

¢ = ; (6.1)
The body boundary condition of Equation (2.11) simplifies to:

a¢/(k) B *)
“on - "

The solution of ¢’ can be found using either the source distribution method or direct method
described earlier.

Garrison and Berklite [24], Garrison [25], and Newman [26] discuss the solution of added
mass and velocity potentials at low and high frequency limits. The surface body condition of
Equation (2.4) can be expressed in terms of ¢’ as:

on Sy (6.2)

ilod
_ 2 4 Y — .
w'd +g o 0 atz=0 (6.3)
The low frequency limit of this boundary condition is:

04’

57 0 at z=0forw=0 (6.4)

The high frequency limit of the boundary condition is:
¢ =0 at z=0forw= 00 (6.5)
The Green function that satisfies the zero frequency boundary condition Equation (6.4) for sway

motion is:

-

Go(£,§) = lnr+lnn (6.6)

For heave and roll of a surface-piercing body, Newman indicates that the radiation condition of
Equation (2.5) is no longer valid at zero frequency. Unfortunately, the Green function for heave
and roll of a surface-piercing body at the zero frequency limit is unknown.

The Green function satisfying the infinite frequency boundary condition of Equation (6.5)
is the frequency independent component of Equation (3.2):

Goo(Z,Zs) = Inr—Inn (6.7)
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Since the Green functions for both zero and infinite frequency are real, the potential ¢’ is real.
Added mass is easily computed using the following revised form of Equation (2.16):

pij = p S¢'(J') () ds (6.8)
b

Approximations to the complex velocity potential ¢ at low and high frequencies can be made
using Equation (6.1), with the exceptions of heave and roll for surface-piercing bodies at low
frequencies.

Ursell [27] discusses the heave motion at low frequencies of elliptical sections which are
half-submerged. The added mass can be approximated by:

B? w?’B
P33z = ——-’07r [—111-—29 - Kss] (6.9)

where B is the waterline breadth. Ursell gives the following equation for the coefficient Ka33:
Kss = In (1 + ggj_) ~ 0.23 (6.10)

where T is sectional draft. For other surface-piercing sections, one can estimate K33 using
Equation (6.9) if added mass ua3 is known at a low frequency. Equation (6.9) can then be used
to estimate heave added mass at other low frequencies

7 Numerical Implementation of Source Distribution and
Direct Methods

Subroutines have been developed for computation of hydrodynamic coefficients using the
source distribution and direct methods. The most difficult aspect of the numerical implementa-
tion was assembling the equations presented earlier in a consistent manner. Different references
use different conventions for various terms, creating problems in consistent numerical implemen-
tation. For example, some references put a factor of 2/x in front of the Green function for a two
dimensional source. Sign conventions for axes and normal vectors introduce additional sources
of possible errors.

After obtaining the relevant equations in a consistent manner, numerical implementation
of the source distribution and direct methods was relatively simple. The majority of developed
source code is used by both methods; thus, the incremental effort required for having both
methods available was minimal.

For integrations of Green functions across line segments, terms involving Inr and Inry
should be integrated carefully, particularly if r and ry are small. The implemented code inte-
grates terms with In 7 and Inr; exactly for all cases. For the frequency dependent part of the
Green function, Gaussian quadrature using four quadrature points on the line segment gives
sufficient accuracy.
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8 Hydrodynamic Coefficients for Sample Geometries

This section gives hydrodynamic coefficients for various sample geometries. The sample
computations provide useful information regarding irregular frequencies, differences between the
various methods, and behaviour at lower and upper frequency limits.

8.1 Sectional Geometries for Computing Hydrodynamic Coefficients

Eight different sectional geometries are used for testing the source distribution and direct
methods. The geometries shown in Figures 8 to 15 represent a broad range of sections for which
hydrodynamic coefficients are required. Table 1 gives the offset coordinates for the sections.
The first three geometries are representative of the bow, midship, and transom sections of the
frigate example in the SHIPMO6 manual [6]. The fourth section is a barge designed to test
the robustness of the algorithms for horizontal and vertical line segments for which the close-
fit method can cause problems. The fifth section is a submarine cross-section which includes
the submarine sail (validation of the SUBMO2 code in Reference 28 indicates that SUBMO2
overpredicts roll excitation moment on a submarine with a sail). The last three sections are
circles at various depths of submergence.

Figure 8: Bow Section of Frigate

Figure 9: Midship Section of Frigate

21




_

Figure 10: Transom Section of Frigate

Figure 11: Barge Section

Figure 12: Submarine Section with Sail
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Figure 13: Deep Circle Section

Figure 14: Shallow Circle Section
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Table 1: Sectional Offsets for Hydrodynamic Coefficients
Bow

y 011418222628
z-4-34-3-22-14-040
Midship
y02455666.26.46.4
z -4-3.8-3.2-2.8-22-1.8-1-020
Transom
y01418222428293
z -1-0.9-0.85-0.8-0.6-0.4-0.20
Barge
y02466666
z-4-4-4-4-3-2-10
Submarine with sail
y 00.06 0.11 0.165 0.1775 0.165 0.11 0.06 0.0416 0.0416 0.0416 0.0416 0.0416 0.03 0.015 0

z -0.708 -0.697 -0.669 -0.595 -0.53 -0.465 -0.391 -0.363 -0.357 -0.33 -0.23 -0.13 -0.048 -0.048
-0.048 -0.0481

Deep circle

y 0.000 1.042 2.052 3.000 3.857 4.596 5.196 5.638 5.909 6.000 5.909 5.638 5.196 4.596 3.857
3.000 2.052 1.042 0.000

z -18.000 -17.909 -17.638 -17.196 -16.596 -15.857 -15.000 -14.052 -13.042 -12.000 -10.958
-9.948 -9.000 -8.143 -7.404 -6.804 -6.362 -6.091 -6.000

Shallow circle

y 0.000 1.042 2.052 3.000 3.857 4.596 5.196 5.638 5.909 6.000 5.909 5.638 5.196 4.596 3.857
3.000 2.052 1.042 0.000 ’

z -12.000 -11.909 -11.638 -11.196 -10.596 -9.857 -9.000 -8.052 -7.042 -6.000 -4.958 -3.948
-3.000 -2.143 -1.404 -0.804 -0.362 -0.091 0.000

Surface-piercing circle

y 0.000 1.042 2.052 3.000 3.857 4.596 5.196 5.638 5.909 6.000 5.909 5.638 5.196 4.596 3.857
3.317

z -11.000 -10.909 -10.638 -10.196 -9.596 -8.857 -8.000 -7.052 -6.042 -5.000 -3.958 -2.948 -2.000
-1.143 -0.404 0.000
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Figure 15: Surface-Piercing Circle Section

8.2 Graphs of Computed Hydrodynamic Coefficients

Figures 16 to 57 give added mass and damping coefficients for the various sections. Water
density p is not factored into the plotted values. Computational methods include the direct
method (o = 0), modified direct method (o = 0.2), source distribution method (no lid), and
source distribution method with lid. The source distribution method with lid is used only for
surface-piercing sections, with the lid represented by two line segments.

A ® symbol at the lower and upper frequency limits gives zero and infinite frequency added
mass where applicable. Each page shows added mass and damping plotted to the same scale for
a given section and mode. The damping is divided by frequency so that the added mass and
damping figures for a given section and mode give the relative magnitudes of the added mass
and damping forces. Roll added mass and damping are zero for the circular sections; thus, no
plots are shown.
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Figure 16: Sway Added Mass for Bow Section
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Figure 17: Sway Damping for Bow Section
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Figure 18: Heave Added Mass for Bow Section
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Figure 19: Heave Damping for Bow Section
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Figure 21: Roll Damping for Bow Section
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Figure 22: Sway Added Mass for Midship Section
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Figure 23: Sway Damping for Midship Section
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Figure 24: Heave Added Mass for Midship Section
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Figure 25: Heave Damping for Midship Section
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Figure 26: Roll Added Mass for Midship Section
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Figure 27: Roll Damping for Midship Section
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Figure 28: Sway Added Mass for Transom Section
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Figure 29: Sway Damping for Transom Section
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Figure 30: Heave Added Ma:és for Transom Section
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Figure 31: Heave Damping for Transom Section
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Figure 32: Roll Added Mass for Trangom Section
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Figure 33: Roll Damping for Tra,nsoz:él Section
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Figure 34: Sway Added Mass for Barge Section
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Figure 35: Sway Damping for Barge Section
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Figure 36: Heave Added Mass for Barge Section
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Figure 37: Heave Damping for Barge Section
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Figure 41: Sway Damping for Submarine Sail Section
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Figure 47: Sway Damping for Deep Circle Section
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Figure 49: Heave Damping for Deep Circle Section
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Figure 51: Sway Damping for Shallow Circle Section
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Figure 53: Heave Damping for Shallow Circle Section
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8.3 Discussion of Computed Hydrodynamic Coefficients

In general, the computed hydrodynamic coefficients behave as expected, with good agree-
ment between the direct and source distribution methods. The modified direct method clearly
gives the most reliable results. The direct method (o = 0) gives generally good results, but
has some problems with irregular frequencies. The source distribution methods have problems
regardless of whether a lid is used; the presence of a lid shifts the irregular frequencies. Irregular
frequencies are particularly severe for the transom section, which has a high breadth to draft
ratio.

The shallow and surface-piercing circle sections exhibit negative sway added mass. The
consistency of the results suggests that these negative added masses could be a real physical
phenomenon.

The zero and infinite frequency approximations for added mass show excellent agreement
with the low and high frequency behaviour of the frequency dependent added masses. As
oscillation frequency approaches zero, heave added mass of surface-piercing sections approaches
infinity. In contrast, Kim [29] shows that heave added mass for semi-submerged ellipsoids
approach finite limits as frequency approaches zero. The conclusion from this discrepancy is
that two dimensional calculations greatly over-predict the heave added mass of a ship section
at low frequency. The next section proposes a solution to this problem.

Unlike the close-fit method currently in SHIPMO, the new source distribution and direct
methods are able to handle sections with horizontal and vertical segments, as demonstrated by
the consistent results for the barge section.

9 Heave and Roll Coefficients at Low Encounter Frequency

As discussed earlier, a zero frequency Green function provides a suitable approximation for
sway coefficients at low encounter frequencies. Unfortunately, this low frequency approximation
is not valid for heave and roll.

Figures 20 to 45 indicate that roll added mass approaches a finite limit and roll damping
approaches zero as oscillation frequency approaches zero. This consistent behaviour suggests that
the following approximations can be used for predicting roll velocity potential and associated
coefficients at low frequency:

@) = gy imag {4} (9.1)
pra(w) = paa(wV) (9.2)
pag(w) = pas(w) (9.3)
Aag(w) = 0 (9.4)
Ag(w) = 0 (9.5)

(4)

where wg / is the lowest frequency for which roll coefficients have been computed. From an

analysis of the computed hydrodynamic coefficients in Figures 18 to 57, it is suggested that w£4)
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should be 0.2 y/¢/7mas Or lower, where 7., is the maximum distance from the roll origin to a
sectional offset point.

In contrast to roll added mass and damping, heave added mass for surface-piercing two
dimensional sections approaches infinity and damping approaches a finite value at low frequency,
as illustrated in Figures 18 to 57. Heave added masses for semi-submerged ellipsoids presented
by Kim [16] indicate that heave added mass approaches a finite zero frequency value and heave
damping approaches zero at low frequency. Comparison of strip theory and three dimensional
computations for semi-submerged ellipsoids in Figures 58 to 65 suggests that strip theory gives
excessively high added mass and damping values for surface-piercing sections at low oscillation
frequencies. The ellipsoids have draft equal to half the beam; thus, all sections are semi-circular.
The ellipsoid with L/B = 8 can be considered a rough approximation of a frigate, while the
ellipsoid L/ B = 4 roughly approximates a coastal patrol vessel.

Strip theory should be able to provide reliable heave coefficient predictions for a slender
ellipsoid (e.g. L/B = 8). Heave coefficient predictions for low L/B bodies, and pitch coefficient
predictions for all bodies, are prone to errors caused by three dimensional effects. Examining
the heave added mass and damping predictions in Figures 58 and 59 for the slender ellipsoid, it
is proposed that sectional heave coeflicients deteriorate when the oscillation frequency is below
w§3) = 0.24/9/Ymaz, Where w§3) is the lowest frequency for reliable heave coefficients and 9, is
maximum half-breadth of a given section. The cut-off frequency is referenced to ¥4, instead of
y at the surface to account for sections which are narrow at the waterline but are significantly
wider immediately below the surface.

Heave computations at w((,s) can likely provide improved modelling of low frequency be-

haviour for an actual ship. The approximating equations are as follows:

$9(w) = — iImag {¢)(w()} (9.6)
pas(w) = paa(w®) (9.7)
Azz(w) = O (9.8)

Corrected strip theory coefficients in Figures 58 to 65 indicate that the low frequency heave
correction leads to improved strip theory values.

10 Implementation of Improved Methods into Strip Theory
Program SHIPMO

The modified direct method should replace the close-fit method presently used in SHIPMO
in order to remove erratic results caused by irregular wave frequencies. It would also eliminate
problems caused by vertical and horizontal section segments.

Appendix A gives documentation for the subroutine BOUND2D, which is the Fortran
implementation of the direct method. Subroutine BOUND2D and various supporting routines
can replace subroutine CLOSEFIT in the SHIPMO code. Integration of BOUND2D within the
code should be quite simple. Velocity potentials from BOUND2D are the complex conjugate of
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values from CLOSEFIT. The present SHIPMO code calculates the complex conjugate of velocity
potentials after calling CLOSEFIT; this step will not be necessary when BOUND2D replaces
CLOSEFIT because the BOUND2D formulation is consistent with the rest of the SHIPMO
code.

At high encounter frequencies, the approximation based on the infinite frequency Green
function should be used to compute hydrodynamic coefficients for sway, heave, and roll. For sway
at low encounter frequencies, SHIPMO can use an approximation based on the zero frequency
Green function. For heave and roll at low encounter frequencies, SHIPMO can reasonably assume
that velocity potential is proportional to frequency; however, the reference low frequency limit
for heave must be carefully chosen. Furthermore, the influence of the heave low frequency
approximation on excitation forces and ship motions should be examined before implementation
into SHIPMO.

11 Conclusions

Two improved methods exist for predicting hydrodynamic coefficients of two dimensional
sections. Of the two methods, the modified direct method gives more consistent results than the
source distribution method. The modified direct method effectively eliminates problems caused
by irregular frequencies.

Assymptotic solutions are available for sway, heave, and roll at high frequencies and for
sway at low frequencies. Roll coefficients at low frequencies are well behaved. For low frequency
heave of surface-piercing sections, two dimensional methods give unrealistically large values
of added mass and damping for ship sections. A cut-off low frequency provides an improved
estimate of added mass at low frequencies, and could possibly give improved motion predictions.

In the next revision of the SHIPMO strip theory code, the modified direct method should
replace the existing close-fit method. This revision to SHIPMO will eliminate errors introduced
by irregular frequencies. Low and high frequency approximations should also lead to improved

SHIPMO predictions.
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Appendix

A Subroutine BOUND2D for Computing Sectional
Hydrodynamic Coefficients

Subroutine BOUND2D computes hydrodynamic coefficients for a two dimensional symme-
trical ship section. The subroutine uses a modified direct method, which effectively eliminates
problems caused by irregular frequencies for surface-piercing sections.

The Fortran declaration for the subroutine is:
SUBROUTINE BOUND2D(IOLDGEOM, NP, YSECT, ZSECT, ZCG, GRAVITY, WE,
* ALPHAB2D, AB2, AB24, AB3, AB4, PHI2, PHI3, PHI4)

REAL YSECT(NP), ZSECT(NP)
COMPLEX AB2, AB24, AB3, AB4, PHI2(NP-1), PHI3(NP-1), PHI4(NP-1)

The units of the input and output variables are determined by the value of GRAVITY
(typically 9.806 m/s® or 32.174 ft/s?). The input variables are:

IOLDGEOM  Set to 1 if same geometry as previous call to subroutine, 0 otherwise,

NP Number of section offset points,
YSECT Vector of NP lateral offsets (m or ft), beginning at keel (YSECT(I) > 0),
ZSECT Vector of NP vertical offsets (m or ft) relative to waterline, beginning at keel

(ZSECT(I) £ 0),
ZCG Height of reference point above waterline (m or ft),

GRAVITY Gravitational acceleration (m/s? or ft/s?). GRAVITY is typically 9.806 (met-
ric) or 32.174 (British).

WE Encounter frequency (rad/s).

The hydrodynamic coefficients must be multiplied by water density to get added mass and
damping. The output variables are:

AB2 Real component is sway added mass (m? or ft?) and imaginary component is
sway damping (m?/s or ft%/s),

AB24 Real component is sway-roll added mass (m® or ft®) and imaginary component
is sway-roll damping (m?/s or ft3/s),

AB3 Real component is heave added mass (m? or ft?) and imaginary component is
heave damping (m?/s or ft2/s),

AB4 Real component is roll added mass (m* or ft*) and imaginary component is roll
damping (m*/s or ft*/s),
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PHI2
PHI3
PHI4

Vector of sway velocity potentials on segments (m/s or ft/s),
Vector of heave velocity potentials on segments (m/s or ft/s),

Vector of roll velocity potentials on segments (m?/s or ft2/s).
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